A variable smoothing algorithm for solving convex optimization problems

نویسندگان

  • Radu Ioan Boţ
  • Christopher Hendrich
چکیده

In this article we propose a method for solving unconstrained optimization problems with convex and Lipschitz continuous objective functions. By making use of the Moreau envelopes of the functions occurring in the objective, we smooth the latter to a convex and differentiable function with Lipschitz continuous gradient by using both variable and constant smoothing parameters. The resulting problem is solved via an accelerated first-order method and this allows us to recover approximately the optimal solutions to the initial optimization problem with a rate of convergence of order O( ln k k ) for variable smoothing and of order O( 1 k ) for constant smoothing. Some numerical experiments employing the variable smoothing method in image processing and in supervised learning classification are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative study of RPSALG algorithm for convex semi-infinite programming

The Remez penalty and smoothing algorithm (RPSALG) is a unified framework for penalty and smoothing methods for solving min-max convex semiinfinite programing problems, whose convergence was analyzed in a previous paper of three of the authors. In this paper we consider a partial implementation of RPSALG for solving ordinary convex semi-infinite programming problems. Each iteration of RPSALG in...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

Smoothing methods for nonsmooth, nonconvex minimization

We consider a class of smoothing methods for minimization problems where the feasible set is convex but the objective function is not convex, not differentiable and perhaps not even locally Lipschitz at the solutions. Such optimization problems arise from wide applications including image restoration, signal reconstruction, variable selection, optimal control, stochastic equilibrium and spheric...

متن کامل

A smoothing majorization method for l22-lpp matrix minimization

We discuss the l2-lp (with p ∈ (0, 1)) matrix minimization for recovering low rank matrix. A smoothing approach is developed for solving this non-smooth, non-Lipschitz and non-convex optimization problem, in which the smoothing parameter is used as a variable and a majorization method is adopted to solve the smoothing problem. The convergence theorem shows that any accumulation point of the seq...

متن کامل

A double smoothing technique for solving unconstrained nondifferentiable convex optimization problems

The aim of this paper is to develop an efficient algorithm for solving a class of unconstrained nondifferentiable convex optimization problems in finite dimensional spaces. To this end we formulate first its Fenchel dual problem and regularize it in two steps into a differentiable strongly convex one with Lipschitz continuous gradient. The doubly regularized dual problem is then solved via a fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012